Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Dermatol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Dermatological Research
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Suppression of hair follicle development inhibits induction of sonic hedgehog, patched, and patched-2 in hair germs in mice

Authors: G, Yamago; Y, Takata; I, Furuta; K, Urase; T, Momoi; N, Huh;

Suppression of hair follicle development inhibits induction of sonic hedgehog, patched, and patched-2 in hair germs in mice

Abstract

Embryonic induction of hair follicles is a fascinating model of localized morphogenesis from a simple homogeneous epithelial cell sheet. Accumulating evidence indicates that Sonic hedgehog (Shh) signaling plays a central role in hair follicle formation. We quantitated the expression levels of Shh and its receptor genes, Patched (Ptc) and Patched-2 (Ptch2), in two distinct experimental systems in which the development of hair follicles was suppressed. Shh, Ptc, and Ptch2 were induced about six- to tenfold in normal embryonic hair germs in vivo as well as in developing skin tissue maintained in organ culture. This induction was almost completely inhibited both in the developing skin tissue of ICR mice cultured with 30ng/ml epidermal growth factor and in embryos of Tabby mutant mice (a model of hypohidrotic ectodermal dysplasia) at 14.5-15.5 days postcoitus. Expression of Shh, Ptc and Ptch2 was induced in the Tabby embryos at 16.5 days postcoitus, indicating that Shh signaling may be involved in the formation not only of the well-studied guard hair but also of the awl hair. The potential of the two biological systems for studying molecular mechanisms in hair follicle formation, particularly at an early phase including Shh signaling, is discussed.

Related Organizations
Keywords

Patched Receptors, Mice, Inbred ICR, Time Factors, Epidermal Growth Factor, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Receptors, Cell Surface, Patched-2 Receptor, Mice, Mutant Strains, Patched-1 Receptor, Embryonic and Fetal Development, Mice, Organ Culture Techniques, Gene Expression Regulation, Reference Values, Trans-Activators, Animals, Hedgehog Proteins, Hair Follicle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%