Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

STAT3 promotes motor neuron differentiation by collaborating with motor neuron-specific LIM complex

Authors: Jae Woon Lee; Jae Woon Lee; Seung-Hee Lee; Soo Kyung Lee; So Yeon Seo; Rongkun Shen; Ryuk Jun Kwon; +1 Authors

STAT3 promotes motor neuron differentiation by collaborating with motor neuron-specific LIM complex

Abstract

The motor neuron (MN)–hexamer complex consisting of LIM homeobox 3, Islet-1, and nuclear LIM interactor is a key determinant of motor neuron specification and differentiation. To gain insights into the transcriptional network in motor neuron development, we performed a genome-wide ChIP-sequencing analysis and found that the MN–hexamer directly regulates a wide array of motor neuron genes by binding to the HxRE (hexamer response element) shared among the target genes. Interestingly, STAT3-binding motif is highly enriched in the MN–hexamer–bound peaks in addition to the HxRE. We also found that a transcriptionally active form of STAT3 is expressed in embryonic motor neurons and that STAT3 associates with the MN–hexamer, enhancing the transcriptional activity of the MN–hexamer in an upstream signal-dependent manner. Correspondingly, STAT3 was needed for motor neuron differentiation in the developing spinal cord. Together, our studies uncover crucial gene regulatory mechanisms that couple MN–hexamer and STAT-activating extracellular signals to promote motor neuron differentiation in vertebrate spinal cord.

Keywords

Motor Neurons, STAT3 Transcription Factor, Mice, Enhancer Elements, Genetic, Genome, LIM-Homeodomain Proteins, Animals, Cell Differentiation, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze