Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions

An Efficient Multi-Indicator and Many-Objective Optimization Algorithm based on Two-Archive

Authors: Ziming Wang; Xin Yao 0001;

An Efficient Multi-Indicator and Many-Objective Optimization Algorithm based on Two-Archive

Abstract

Indicator-based algorithms are gaining prominence as traditional multi-objective optimization algorithms based on domination and decomposition struggle to solve many-objective optimization problems. However, previous indicator-based multi-objective optimization algorithms suffer from the following flaws: 1) The environment selection process takes a long time; 2) Additional parameters are usually necessary. As a result, this paper proposed an multi-indicator and multi-objective optimization algorithm based on two-archive (SRA3) that can efficiently select good individuals in environment selection based on indicators performance and uses an adaptive parameter strategy for parental selection without setting additional parameters. Then we normalized the algorithm and compared its performance before and after normalization, finding that normalization improved the algorithm's performance significantly. We also analyzed how normalizing affected the indicator-based algorithm and observed that the normalized $I_{��+}$ indicator is better at finding extreme solutions and can reduce the influence of each objective's different extent of contribution to the indicator due to its different scope. However, it also has a preference for extreme solutions, which causes the solution set to converge to the extremes. As a result, we give some suggestions for normalization. Then, on the DTLZ and WFG problems, we conducted experiments on 39 problems with 5, 10, and 15 objectives, and the results show that SRA3 has good convergence and diversity while maintaining high efficiency. Finally, we conducted experiments on the DTLZ and WFG problems with 20 and 25 objectives and found that the algorithm proposed in this paper is more competitive than other algorithms as the number of objectives increases.

15 pages,9 figures

Keywords

FOS: Computer and information sciences, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green