Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Infectious Diseases
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Infectious Diseases
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions

Pharmacokinetics, Safety, and Antiviral Effects of Multiple Doses of the Respiratory Syncytial Virus (RSV) Fusion Protein Inhibitor, JNJ-53718678, in Infants Hospitalized With RSV Infection: A Randomized Phase 1b Study

Authors: Martinon-Torres F.; Rusch S.; Huntjens D.; Remmerie B.; Vingerhoets J.; McFadyen K.; Ferrero F.; +4 Authors

Pharmacokinetics, Safety, and Antiviral Effects of Multiple Doses of the Respiratory Syncytial Virus (RSV) Fusion Protein Inhibitor, JNJ-53718678, in Infants Hospitalized With RSV Infection: A Randomized Phase 1b Study

Abstract

Abstract Background This phase 1b study evaluated the pharmacokinetics, safety, and antiviral effects of the respiratory syncytial virus (RSV)–specific fusion inhibitor JNJ-53718678 (JNJ-8678) in hospitalized RSV-infected patients aged > 1 to ≤24 months. Methods Patients categorized by age (cohort 1: ≥6 to ≤24 months; cohort 2: ≥3 to < 6 months; cohort 3: > 1 to < 3 months) were randomized to oral JNJ-8678 or placebo once daily for 7 days. Dose increases followed data review committee recommendations (cohort 1: 2/6/8/9 mg/kg; cohort 2: 1.5/4.5/6 mg/kg; cohort 3: 1/3/5 mg/kg). Cohort 1 included a 9 mg/kg dose, as target exposures were not reached at lower doses. Sparse pharmacokinetic samples were assessed using population pharmacokinetics modeling. Safety was assessed by adverse events (AEs), laboratory tests, and electrocardiograms. To assess antiviral effects, RSV RNA viral load from nasal swabs was quantified over time using reverse-transcription quantitative polymerase chain reaction. Results Patients received JNJ-8678 (n = 37) or placebo (n = 7). Pharmacokinetic parameters were similar at the highest doses for cohorts 1–3 (area under the plasma concentration–time curve from time of administration up to 24 hours postdosing at day 7: 35 840, 34 980, and 39 627 ng × hour/mL, respectively). Two grade 3 AEs were reported (both bronchiolitis; 1 JNJ-8678, 1 placebo), reported as serious AEs; all other AEs were grade 1 or 2. Two additional serious AEs were reported (rhinitis [JNJ-8678]; pneumonia [placebo]). No deaths, grade 4 AEs, or AEs leading to discontinuation were reported. Median RSV viral load change from baseline in JNJ-8678 vs placebo by day 3 was −1.98 vs −0.32 log10 copies/mL. Conclusions In RSV-infected infants, JNJ-8678 was well tolerated. Target exposures were reached and antiviral activity was observed. Clinical Trials Registration NCT02593851.

Keywords

Indoles, fusion inhibitor, infants, respiratory syncytial virus, JNJ-8678, Fusion inhibitor; Infants; JNJ-53718678; JNJ-8678; Respiratory syncytial virus; Aged; Antiviral Agents; Double-Blind Method; Humans; Indoles; Infant; Imidazolidines; Respiratory Syncytial Virus Infections, JNJ-53718678, Infant, Respiratory Syncytial Virus Infections, Imidazolidines, Antiviral Agents, Double-Blind Method, Humans, Online Only Articles, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
hybrid