Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2006
versions View all 4 versions

Synchronization and Maintenance of Timekeeping in Suprachiasmatic Circadian Clock Cells by Neuropeptidergic Signaling

Authors: Maywood, Elizabeth S.; Reddy, Akhilesh B.; Wong, Gabriel K.Y.; O'Neill, John S.; O'Brien, John A.; McMahon, Douglas G.; Harmar, Anthony J.; +2 Authors

Synchronization and Maintenance of Timekeeping in Suprachiasmatic Circadian Clock Cells by Neuropeptidergic Signaling

Abstract

Circadian timekeeping in mammals is driven by transcriptional/posttranslational feedback loops that are active within both peripheral tissues and the circadian pacemaker of the suprachiasmatic nuclei (SCN). Spontaneous synchronization of these molecular loops between SCN neurons is a primary requirement of its pacemaker role and distinguishes it from peripheral tissues, which require extrinsic, SCN-dependent cues to impose cellular synchrony. Vasoactive intestinal polypeptide (VIP) is an intrinsic SCN factor implicated in acute activation and electrical synchronization of SCN neurons and coordination of behavioral rhythms. Using real-time imaging of cellular circadian gene expression across entire SCN slice cultures, we show for the first time that the Vipr2 gene encoding the VPAC2 receptor for VIP is necessary both to maintain molecular timekeeping within individual SCN neurons and to synchronize molecular timekeeping between SCN neurons embedded within intact, organotypical circuits. Moreover, we demonstrate that both depolarization and a second SCN neuropeptide, gastrin-releasing peptide (GRP), can acutely enhance and synchronize molecular timekeeping in Vipr2-/- SCN neurons. Nevertheless, transiently activated and synchronized Vipr2-/- cells cannot sustain synchrony in the absence of VIP-ergic signaling. Hence, neuropeptidergic interneuronal signaling confers a canonical property upon the SCN: spontaneous synchronization of the intracellular molecular clockworks of individual neurons.

Keywords

Feedback, Physiological, Neurons, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Recombinant Fusion Proteins, Green Fluorescent Proteins, Neuropeptides, Circadian Rhythm, Mice, Gastrin-Releasing Peptide, Genes, Reporter, Animals, Receptors, Vasoactive Intestinal Peptide, Type II, Suprachiasmatic Nucleus, SYSNEURO, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    403
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
403
Top 1%
Top 1%
Top 1%
hybrid