Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
Cell Cycle
Article . 2009 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2010
versions View all 2 versions

Cdh1 controls the stability of TACC3

Authors: Jen-Chong, Jeng; Ying-Mei, Lin; Chiou-Hong, Lin; Hsiu-Ming, Shih;
Abstract

Transforming acidic coiled-coil protein 3 (TACC3) was reported to be important for regulating mitotic spindle assembly and chromosome segregation. While the protein level of TACC3 was shown to be altered during cell cycle progression, the molecular mechanism in controlling TACC3 level is unclear. Here, we show that TACC3 protein level can be regulated by Cdh1, a well known activator of anaphase-promoting complex/cyclosome. We identified Cdh1 as an interacting partner of TACC3 by a yeast array screen. Both in vitro and in vivo binding studies indicated that TACC3 can form complexes with Cdh1. Depletion of endogenous Cdh1 prolonged TACC3 protein level during mitotic exit. Alteration of Cdh1 level by ectopic overexpression or siRNA knockdown correlated well with an increase or decrease of ubiquitinated TACC3, respectively. Furthermore, the domain mapping studies of TACC3 revealed that multiple domains are involved in Cdh1-regulated degradation of TACC3. Altogether, our findings suggest that Cdh1 controls TACC3 protein stability during mitotic exit.

Keywords

Proteasome Endopeptidase Complex, Cdc20 Proteins, Leupeptins, Protein Stability, Ubiquitination, Mitosis, Cell Cycle Proteins, Spindle Apparatus, Cysteine Proteinase Inhibitors, Cadherins, Transfection, Antigens, CD, Cell Line, Tumor, Mutation, Humans, Mutant Proteins, Cyclin B1, Microtubule-Associated Proteins, Proteasome Inhibitors, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Average
Top 10%
bronze