Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The 5-HT3B Subunit Confers Spontaneous Channel Opening and Altered Ligand Properties of the 5-HT3 Receptor

Authors: Xiang-Qun, Hu; Robert W, Peoples;

The 5-HT3B Subunit Confers Spontaneous Channel Opening and Altered Ligand Properties of the 5-HT3 Receptor

Abstract

Current receptor theory suggests that there is an equilibrium between the inactive (R) and active (R*) conformations of ligand-gated ion channels and G protein-coupled receptors. The actions of ligands in both receptor types could be appropriately explained by this two-state model. Ligands such as agonists and antagonists affect receptor function by stabilizing one or both conformations. The 5-HT3 receptor is a member of the Cys-loop ligand-gated ion channel superfamily participating in synaptic transmission. Here we show that co-expression of the 5-HT3A and 5-HT3B receptor subunits in the human embryonic kidney (HEK) 293 cells results in a receptor that displays a low level of constitutive (or agonist-independent) activity. Furthermore, we also demonstrate that the properties of ligands can be modified by receptor composition. Whereas the 5-hydroxytryptamine (5-HT) analog 5-methoxyindole is a partial agonist at the 5-HT3A receptor, it becomes a "protean agonist" (functioning as an agonist and an inverse agonist at the same receptor) at the 5-HT3AB receptor (after the Greek god Proteus, who was able to change his shape and appearance at will). In addition, the 5-HT analog 5-hydroxyindole is a positive allosteric modulator for the liganded active (AR*) conformation of the 5-HT3A and 5-HT3AB receptors and a negative allosteric modulator for the spontaneously active (R*) conformation of the 5-HT3AB receptor, suggesting that the spontaneously active (R*) and liganded active (AR*) conformations are differentially modulated by 5-hydroxyindole. Thus, the incorporation of the 5-HT3B subunit leads to spontaneous channel opening and altered ligand properties.

Related Organizations
Keywords

DNA, Complementary, Indoles, Patch-Clamp Techniques, Protein Conformation, Ligands, Transfection, Models, Biological, Cell Line, Cell Physiological Phenomena, Kinetics, Models, Chemical, Humans, Receptors, Serotonin, 5-HT3, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%
gold