Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation
Article . 2006 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2006
versions View all 5 versions

Systemic Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery Shows Antiatherosclerotic Activity in Apolipoprotein E–Null Diabetic Mice

Authors: Secchiero P.; Candido R.; Corallini F.; ZACCHIGNA, SERENA; TOFFOLI, BARBARA; Rimondi E.; FABRIS, BRUNO; +2 Authors

Systemic Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery Shows Antiatherosclerotic Activity in Apolipoprotein E–Null Diabetic Mice

Abstract

Background—Although in vitro studies have suggested that tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) might be involved in vascular biology, its potential role in the pathogenesis and/or treatment of atherosclerosis has not been investigated.Methods and Results—Both recombinant human TRAIL and an adeno-associated virus vector expressing human TRAIL were used to deliver TRAIL in apolipoprotein E (apoE)–null mice in which diabetes mellitus was induced by destruction of islet cells with streptozotocin. Diabetes in apoE-null mice was associated with a significant increase in atherosclerotic plaque area and complexity in the aorta as assessed by a marked increase in interstitial collagen, cellular proliferation, and macrophage infiltration and a focal loss of endothelial coverage. Repeated intraperitoneal injections of recombinant human TRAIL and a single intravenous injection of adeno-associated virus–human TRAIL significantly attenuated the development of atherosclerotic plaques in apoE-null animals. TRAIL also markedly affected the cellular composition of plaque lesions by inducing apoptosis of infiltrating macrophages and increasing the vascular smooth muscle cell content. Moreover, TRAIL promoted the in vitro migration of cultured human aortic vascular smooth muscle cells but not of monocytes or macrophages. Conversely, TRAIL selectively induced apoptosis of human cultured macrophages but not of vascular smooth muscle cells.Conclusions—Overall, data from the present study indicate that atherosclerosis in diabetic apoE-null mice is ameliorated by systemic TRAIL administration and that adeno-associated virus–mediated TRAIL gene delivery might represent an innovative method for the therapy of diabetic vascular diseases.

Keywords

Myocytes, Smooth Muscle, Apoptosis, Muscle, Smooth, Vascular, Streptozocin, Diabetes Mellitus, Experimental, plaque, TNF-Related Apoptosis-Inducing Ligand, Mice, atherosclerosi, Apolipoproteins E, Cell Movement, Animals, Humans, Aorta, Cells, Cultured, Mice, Knockout, Membrane Glycoproteins, diabetes mellitu, Tumor Necrosis Factor-alpha, Macrophages, Atherosclerosis, gene therapy, atherosclerosis; diabetes mellitus; gene therapy; immunohistochemistry; plaque, immunohistochemistry, Apoptosis Regulatory Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 10%
Top 10%
Top 10%
bronze