Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

DRhoGEF2andDiaphanousRegulate Contractile Force during Segmental Groove Morphogenesis in theDrosophilaEmbryo

Authors: Shai, Mulinari; Mojgan Padash, Barmchi; Udo, Häcker;

DRhoGEF2andDiaphanousRegulate Contractile Force during Segmental Groove Morphogenesis in theDrosophilaEmbryo

Abstract

Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis.

Related Organizations
Keywords

Myosin Type II, rho GTP-Binding Proteins, Embryo, Nonmammalian, Formins, Cell Cycle Proteins, Actomyosin, Actins, Protein Transport, Drosophila melanogaster, Epidermal Cells, Cell Adhesion, Animals, Drosophila Proteins, Epidermis, Carrier Proteins, Cell Shape, Body Patterning, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze