Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neoplasia: An Intern...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neoplasia: An International Journal for Oncology Research
Article . 2013 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions

The Oncogenic Polycomb Histone Methyltransferase EZH2Methylates Lysine 120 on Histone H2B and Competes Ubiquitination

Authors: Masaharu Kogure; Masashi Takawa; Vassiliki Saloura; Kenbun Sone; Lianhua Piao; Koji Ueda; Reem Ibrahim; +5 Authors

The Oncogenic Polycomb Histone Methyltransferase EZH2Methylates Lysine 120 on Histone H2B and Competes Ubiquitination

Abstract

The histone methyltransferase enhancer of zeste 2 (EZH2) is known to be a polycomb protein homologous to Drosophila enhancer of zeste and catalyzes the addition of methyl groups to histone H3 at lysine 27 (H3K27). We previously reported that EZH2 was overexpressed in various types of cancer and plays a crucial role in the cell cycle regulation of cancer cells. In the present study, we demonstrated that EZH2 has the function to monomethylate lysine 120 on histone H2B (H2BK120). EZH2-dependent H2BK120 methylation in cancer cells was confirmed with an H2BK120 methylation-specific antibody. Overexpression of EZH2 significantly attenuated the ubiquitination of H2BK120, a key posttranslational modification of histones for transcriptional regulation. Concordantly, knockdown of EZH2 increased the ubiquitination level of H2BK120, suggesting that the methylation of H2BK120 by EZH2 may competitively inhibit the ubiquitination of H2BK120. Subsequent chromatin immunoprecipitation-Seq and microarray analyses identified downstream candidate genes regulated by EZH2 through the methylation of H2BK120. This is the first report to describe a novel substrate of EZH2, H2BK120, unveiling a new aspect of EZH2 functions in human carcinogenesis.

Related Organizations
Keywords

Transcription, Genetic, Carcinogenesis, Lysine, Polycomb Repressive Complex 2, Ubiquitination, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, HCT116 Cells, Cell Line, Gene Expression Regulation, Neoplastic, Histones, HEK293 Cells, Cell Line, Tumor, MCF-7 Cells, Humans, Enhancer of Zeste Homolog 2 Protein, RC254-282, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research