Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
Protein Science
Article . 2021
versions View all 3 versions

Study of the TEAD‐binding domain of the YAP protein from animal species

Authors: Yannick Mesrouze; Fedir Bokhovchuk; Marco Meyerhofer; Catherine Zimmermann; Patrizia Fontana; Dirk Erdmann; Patrick Chène;

Study of the TEAD‐binding domain of the YAP protein from animal species

Abstract

AbstractThe Hippo signaling pathway, which plays a central role in the control of organ size in animals, is well conserved in metazoans. The most downstream elements of this pathway are the TEAD transcription factors that are regulated by their association with the transcriptional coactivator YAP. Therefore, the creation of the binding interface that ensures the formation of the YAP:TEAD complex is a critical molecular recognition event essential for the development/survival of many living organisms. In this report, using the available structural information on the YAP:TEAD complex, we study the TEAD‐binding domain of YAP from different animal species. This analysis of more than 400 amino acid sequences reveals that the residues from YAP involved in the formation of the two main contact regions with TEAD are very well conserved. Therefore, the binding interface between YAP and TEAD, as found in humans, probably appeared at an early evolutionary stage in metazoans. We find that, in contrast to most other animal species, several Actinopterygii species possess YAP variants with a different TEAD‐binding domain. However, these variants bind to TEAD with a similar affinity. Our studies show that the protein identified as a YAP homolog in Caenorhabditis elegans does not contain the TEAD‐binding domain found in YAP of other metazoans. Finally, we do not identify in non‐metazoan species, amino acid sequences containing both a TEAD‐binding domain, as in metazoan YAP, and WW domain(s).

Keywords

YAP-Signaling Proteins, Articles, Evolution, Molecular, Protein Domains, Species Specificity, Animals, Humans, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Adaptor Proteins, Signal Transducing, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
hybrid