Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Science
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Science
Article . 2013
versions View all 2 versions

Novel roles of Vmp1: Inhibition metastasis and proliferation of hepatocellular carcinoma

Authors: Lei, Guo; Lian-Yue, Yang; Chun, Fan; Guo-Dong, Chen; Fan, Wu;

Novel roles of Vmp1: Inhibition metastasis and proliferation of hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) is one of the most deadly human cancers because of its high incidence of metastasis. Despite extensive efforts, therapies against metastasis of HCC remain underdeveloped. Vacuole membrane protein 1 (Vmp1) was recently identified to be involved in cancer‐relevant processes; however, its expression, clinical significance and biological function in HCC progression are still unknown. Therefore, we evaluated the expression of Vmp1 in human HCC specimens. To functionally characterize Vmp1 in HCC, we upregulated its expression in HCCLM3 cells using a plasmid transfection approach, following which both in vitro and in vivo models were used to elucidate its role. A significant downregulation of Vmp1 was found in human HCC tissues and closely correlated with multiple tumor nodes, absence of capsular formation, vein invasion and poor prognosis of HCC. Such expression was verified with HCC cell lines including HepG2, MHCC97‐L and HCCLM3, and the Vmp1 expression levels negatively correlated with metastatic potential. Interestingly, upregulation of Vmp1 significantly affects proliferation, migration, invasion and adhesion of HCCLM3 cells. Using a mouse model, we demonstrated that upregulation of Vmp1 was associated with suppression of growth and pulmonary metastases of HCC. Therefore, our data suggest Vmp1 is a novel prognostic marker and potential therapeutic target for metastasis of HCC.

Related Organizations
Keywords

Adult, Male, Mice, Inbred BALB C, Carcinoma, Hepatocellular, Reverse Transcriptase Polymerase Chain Reaction, Liver Neoplasms, Membrane Proteins, Mice, Nude, Middle Aged, Transfection, Up-Regulation, Mice, Cell Movement, Cell Line, Tumor, Animals, Humans, Female, Neoplasm Metastasis, Aged, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research