Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside
pmid: 15134748
Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside
Plants possess a sophisticated sugar biosynthetic machinery comprising families of nucleotide sugar interconversion enzymes. Literature published in the past two years has made a major contribution to our knowledge of the enzymes and genes involved in the interconversion of nucleotide sugars that are required for cell wall biosynthesis, including UDP-L-rhamnose, UDP-D-galactose, UDP-D-glucuronic acid, UDP-D-xylose, UDP-D-apiose, UDP-L-arabinose, GDP-L-fucose and GDP-L-galactose. Indirect evidence suggests that enzyme activity is crudely regulated at the transcriptional level in a cell-type and differentiation-dependent manner. However, feedback inhibition and NAD(+)/NADH redox control, as well as the formation of complexes between differentially encoded isoforms and glycosyltransferases, might fine-tune cell wall matrix biosynthesis. I hypothesise that the control of nucleotide sugar interconversion enzymes regulates glycosylation patterns in response to developmental, metabolic and stress-related stimuli, thereby linking signalling with primary metabolism and the dynamics of the extracellular matrix.
- John Innes Centre United Kingdom
- Biotechnology and Biological Sciences Research Council United Kingdom
Isoenzymes, Glycosylation, Cell Wall, Gene Expression Regulation, Plant, Nucleoside Diphosphate Sugars, Arabidopsis, Plants, Oxidoreductases, Oxidation-Reduction, Carbon
Isoenzymes, Glycosylation, Cell Wall, Gene Expression Regulation, Plant, Nucleoside Diphosphate Sugars, Arabidopsis, Plants, Oxidoreductases, Oxidation-Reduction, Carbon
10 Research products, page 1 of 1
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).291 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
