Powered by OpenAIRE graph

The mouse estrogen receptor-related orphan receptor alpha 1: molecular cloning and estrogen responsiveness

Authors: H, Shigeta; W, Zuo; N, Yang; R, DiAugustine; C T, Teng;

The mouse estrogen receptor-related orphan receptor alpha 1: molecular cloning and estrogen responsiveness

Abstract

Estrogen receptor-related orphan receptor alpha 1 is a member of the steroid/thyroid nuclear receptor superfamily. We have previously cloned the human estrogen receptor-related orphan receptor alpha 1 (hERR alpha 1) cDNA and demonstrated that it enhances estrogen responsiveness of the lactoferrin gene promoter in transfected human endometrial carcinoma cells. In the present study, we used the hERR alpha 1 cDNA as a probe and isolated the mouse homologue of ERR alpha 1 from the cDNA libraries of the brain and kidney. Sequence comparison between human and mouse ERR alpha 1 (mERR alpha 1) revealed that the homologies are 89% in nucleotides and 97% in amino acids. By electrophoresis mobility shift assay, we showed that the glutathione S-transferase-mERR alpha 1 fusion protein produced in a bacterial system bound to the human ERR alpha 1 DNA-binding element. Mouse uterine nuclear extract also interacted with this DNA element and produced three complexes in the mobility shift assay, one of which was supershifted by the hERR alpha 1 antiserum. A 2.2 kbp transcript was detected by Northern analysis in all adult mouse tissues tested; however, large variations in the amount of ERR alpha 1 mRNA were found among them. Multiple immunoreactive forms of mouse ERR alpha 1 were detected by Western analysis in non-reproductive tissues, whereas a major 53 kDa protein was found in reproductive tissues such as uterus, cervix and vagina. Diethylstilbestrol (DES) stimulated the expression of ERR alpha 1 mRNA in the uterus of 19-day-old mouse. We showed that DES and estradiol, but not progesterone or dexamethasone, enhanced the level of immunoreactive ERR alpha 1 in the mouse uterus. These results demonstrated that the ERR alpha 1 is an estrogen-responsive gene in the mouse uterus and provides a model system with which to study the biological roles of this nuclear orphan receptor.

Keywords

Male, Receptors, Steroid, Binding Sites, Sequence Homology, Amino Acid, Molecular Sequence Data, Uterus, Gene Expression, Receptors, Cytoplasmic and Nuclear, Estrogens, Mice, Inbred Strains, Mice, Receptors, Estrogen, Animals, Female, Tissue Distribution, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%