Topoisomerase II·Etoposide Interactions Direct the Formation of Drug-induced Enzyme-DNA Cleavage Complexes
pmid: 8910583
Topoisomerase II·Etoposide Interactions Direct the Formation of Drug-induced Enzyme-DNA Cleavage Complexes
Topoisomerase II is the target for several highly active anticancer drugs that induce cell death by enhancing enzyme-mediated DNA scission. Although these agents dramatically increase levels of nucleic acid cleavage in a site-specific fashion, little is understood regarding the mechanism by which they alter the DNA site selectivity of topoisomerase II. Therefore, a series of kinetic and binding experiments were carried out to determine the mechanistic basis by which the anticancer drug, etoposide, enhances cleavage complex formation at 22 specific nucleic acid sequences. In general, maximal levels of DNA scission (i.e. Cmax) varied over a considerably larger range than did the apparent affinity of etoposide (i.e. Km) for these sites, and there was no correlation between these two kinetic parameters. Furthermore, enzyme.drug binding and order of addition experiments indicated that etoposide and topoisomerase II form a kinetically competent complex in the absence of DNA. These findings suggest that etoposide. topoisomerase II (rather than etoposide.DNA) interactions mediate cleavage complex formation. Finally, rates of religation at specific sites correlated inversely with Cmax values, indicating that maximal levels of etoposide-induced scission reflect the ability of the drug to inhibit religation at specific sequences rather than the affinity of the drug for site-specific enzyme-DNA complexes.
- Vanderbilt University United States
- University of Maryland, Baltimore United States
- Thomas Jefferson University United States
- University of Maryland School of Medicine United States
Kinetics, DNA Topoisomerases, Type II, Drosophila melanogaster, Hydrolysis, Animals, Antineoplastic Agents, DNA, Etoposide, Protein Binding
Kinetics, DNA Topoisomerases, Type II, Drosophila melanogaster, Hydrolysis, Animals, Antineoplastic Agents, DNA, Etoposide, Protein Binding
1 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).150 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
