Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2006
versions View all 4 versions

Sequence divergence and conservation in organizationally distinct subfamilies of Donax trunculus satellite DNA

Authors: Plohl, Miroslav; Petrović, Vlatka;

Sequence divergence and conservation in organizationally distinct subfamilies of Donax trunculus satellite DNA

Abstract

Characterization of a low-copy number DTF1 satellite DNA detected in the bivalve mollusk Donax trunculus revealed extensive grouping of monomer sequence variants into subfamilies identified by distinctive combinations of diagnostic nucleotides. It can be anticipated that a large number of subfamilies exists in the genome. In addition to the tandem organization of 169 bp long monomers, at least one subfamily was created through amplification of adjacent repeats in a higher order register. This complex satellite unit consists of two distinctive monomer variants that differ both in specific nucleotide changes and in a deleted segment partially substituted with a short unrelated sequence element. Most of the nucleotide substitutions differing between subfamilies are highly homogenized within a corresponding group of monomer variants, and intra-subfamily variability in general is low. Nucleotide diversity analysis of all sequenced variants of DTF1 satellite revealed the presence of two conserved segments, while the rest of the monomer sequence shows uniform and considerably higher level of variability. The persistence of conserved segments stands in contrast to the sequence and organizational divergence of monomer variant groups, and may indicate constraints in the evolution of DTF1 satellite repeats.

Related Organizations
Keywords

higher order repeats, Genome, Sequence Homology, Amino Acid, Molecular Sequence Data, bivalve molluscs, Genetic Variation, DNA, Satellite, tandem repeats ; higher order repeats ; concerted evolution ; conserved domains ; bivalve molluscs, Evolution, Molecular, tandem repeats, Mollusca, Animals, Amino Acid Sequence, conserved domains, concerted evolution, Conserved Sequence, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%