Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2007 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
The EMBO Journal
Article . 2007
versions View all 2 versions

A κB sequence code for pathway-specific innate immune responses

Authors: Matthew S, Busse; Christopher P, Arnold; Par, Towb; James, Katrivesis; Steven A, Wasserman;

A κB sequence code for pathway-specific innate immune responses

Abstract

The Toll and Imd pathways induce humoral innate immune responses in Drosophila by activating NF-kappaB proteins that bind kappaB target sites. Here, we delineate a kappaB site sequence code that directs pathway-specific expression of innate immune loci. Using bioinformatic analysis of expression and sequence data, we identify shared properties of Imd- and Toll-specific response elements. Employing synthetic kappaB sites in luciferase reporter and in vitro binding assays, we demonstrate that the length of the (G)(n) element in the 5' half-site and of the central (A,T)-rich region combine to specify responsiveness to one or both pathways. We also show that multiple sites function to enhance the response to either or both pathways. Together, these studies elucidate the mechanism by which kappaB motifs direct binding by particular Drosophila NF-kappaB family members and thereby induce specialized innate immune repertoires.

Keywords

Base Sequence, Molecular Sequence Data, Toll-Like Receptors, NF-kappa B, Computational Biology, Immunity, Innate, DNA-Binding Proteins, Drosophila melanogaster, Genes, Reporter, Mutagenesis, Site-Directed, Animals, Drosophila Proteins, Protein Binding, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
gold