Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

SOX9, through Interaction with Microphthalmia-associated Transcription Factor (MITF) and OTX2, Regulates BEST1 Expression in the Retinal Pigment Epithelium

Authors: Tomohiro Masuda; Noriko Esumi;

SOX9, through Interaction with Microphthalmia-associated Transcription Factor (MITF) and OTX2, Regulates BEST1 Expression in the Retinal Pigment Epithelium

Abstract

BEST1 is highly and preferentially expressed in the retinal pigment epithelium (RPE) and causes Best macular dystrophy when mutated. We previously demonstrated that the human BEST1 upstream region -154 to +38 bp is sufficient to direct expression in the RPE of transgenic mice, and microphthalmia-associated transcription factor (MITF) and OTX2 regulate this BEST1 promoter. However, a number of questions remained. Here, we show that yeast one-hybrid screen with bait corresponding to BEST1 -120 to -88 bp identified the SOX-E factors, SOX8, SOX9, and SOX10. A paired SOX site was found in this bait, and mutation of either of the paired sites significantly decreased BEST1 promoter activity in RPE primary cultures. Among the SOX-E genes, SOX9 is highly and preferentially expressed in the RPE, and chromatin immunoprecipitation with fresh RPE cells revealed binding of SOX9, but not SOX10, to the BEST1 region where the paired SOX site is located. BEST1 promoter activity was increased by SOX9 overexpression and decreased by siRNA-mediated SOX9 knockdown. Importantly, SOX9 physically interacted with MITF and OTX2 and orchestrated synergistic activation of the BEST1 promoter with the paired SOX site playing essential roles. A combination of the expression patterns of SOX9, MITF, and OTX2 yielded tissue distribution remarkably similar to that of BEST1. Lastly, the BEST1 promoter was also active in Sertoli cells of the testis in transgenic mice where SOX9 is highly expressed. These results define SOX9 as a key regulator of BEST1 expression and demonstrate for the first time its functional role in the RPE.

Related Organizations
Keywords

Male, Microphthalmia-Associated Transcription Factor, Otx Transcription Factors, Sertoli Cells, Swine, Mice, Transgenic, SOX9 Transcription Factor, Retinal Pigment Epithelium, Response Elements, Ion Channels, Mice, Gene Expression Regulation, Chloride Channels, Cell Line, Tumor, Animals, Humans, Bestrophins, Eye Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
gold