A Novel Recombinant Fusion Protein Encoding a 20-Amino Acid Residue of the Third Extracellular (E3) Domain of CCR2 Neutralizes the Biological Activity of CCL2
pmid: 19535619
A Novel Recombinant Fusion Protein Encoding a 20-Amino Acid Residue of the Third Extracellular (E3) Domain of CCR2 Neutralizes the Biological Activity of CCL2
Abstract CCL2 is a key CC chemokine that has been implicated in a variety of inflammatory autoimmune diseases and in tumor progression and it is therefore an important target for therapeutic intervention in these diseases. Soluble receptor-based therapy is a known approach for neutralizing the in vivo functions of soluble mediators. Owing to the complexity of seven-transmembrane G protein-coupled receptors, efforts to generate neutralizing soluble chemokine receptors have so far failed. We developed a strategy that is based on the generation of short recombinant proteins encoding different segments of a G protein-coupled receptor, and tested the ability of each of them to bind and neutralize its target chemokine. We show that a fusion protein comprised of as few as 20 aa of the third extracellular (E3) domain of the CCL2 receptor, stabilized by the IgG H chain Fc domain (E3-IgG or BL-2030), selectively binds CCL2 and CCL16 and effectively neutralizes their biological activities. More importantly, E3-IgG (BL-2030) could effectively suppress the in vivo biological activity of CCL2, attenuating ongoing experimental autoimmune encephalomyelitis, as well as the development of human prostate tumor in SCID mice.
Male, Mice, Inbred BALB C, Receptors, CCR2, Recombinant Fusion Proteins, Prostatic Neoplasms, Mice, SCID, Cell Line, Protein Structure, Tertiary, Mice, Inbred C57BL, Mice, Cell Line, Tumor, Cell Migration Inhibition, Animals, Humans, Female, Chemokine CCL2, Cell Proliferation, Protein Binding
Male, Mice, Inbred BALB C, Receptors, CCR2, Recombinant Fusion Proteins, Prostatic Neoplasms, Mice, SCID, Cell Line, Protein Structure, Tertiary, Mice, Inbred C57BL, Mice, Cell Line, Tumor, Cell Migration Inhibition, Animals, Humans, Female, Chemokine CCL2, Cell Proliferation, Protein Binding
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
