Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

IGF-I induces vascular endothelial growth factor in human mesangial cells via a Src-dependent mechanism11See Editorial by Cooper and Thomas, p. 1584.

Authors: GRUDEN, Gabriella; ARAF S.; ZONCA S.; BURT D.; THOMAS S.; GNUDI L.; VIBERTI G.;

IGF-I induces vascular endothelial growth factor in human mesangial cells via a Src-dependent mechanism11See Editorial by Cooper and Thomas, p. 1584.

Abstract

Both insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) have been implicated in the pathogenesis of early renal dysfunction in diabetes. We investigated whether IGF-I affects VEGF gene expression and protein secretion in human mesangial cells. Furthermore, we studied the intracellular signaling pathway involved and the interaction of IGF-I with mechanical stretch, a known VEGF inducer.Human mesangial cells were exposed to IGF-I in the presence and in the absence of (1) anti-IGF-I type I receptor antibody (alpha IR3) (1 microg/mL), a monoclonal antibody blocking the IGF-I type I receptor; (2) wortmannin (600 nmol/L), a phosphatidylinositol 3-kinase (PI3K) inhibitor; (3) 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), a specific Src inhibitor (10 micromol/L); and (4) cyclic stretch (approximately 10% elongation).IGF-I induced a dose-dependent increase in VEGF protein levels (10(-11) mol/L, 5%; 10(-10) mol/L, 14%; 10(-9) mol/L, 46%; 10(-8) mol/L, 66%; 10(-7) mol/L, 68%; P < 0.001). IGF-I-induced VEGF production rose by 6 hours with a peak at 12 hours, and declined by 24 hours (52%, 72%, and 34%, respectively; P < 0.01 at 12 hours). A corresponding 50% increase in VEGF mRNA levels was seen at 6 hours (P < 0.01). IGF-I-induced VEGF protein secretion was not affected by the addition of wortmannin (IGF-I, 76% vs. IGF-I + wortmannin, 79% increase over control; P = NS), but was abolished by alpha IR3 (IGF-I, 69% vs. IGF-I +alpha IR3, 0%; P < 0.001) and significantly reduced by PP2 (IGF-I, 50% vs. IGF-I + PP2, 14%; P < 0.01). Simultaneous exposure of human mesangial cells to both IGF-I and stretch failed to further increase VEGF production (IGF-I, 1.49 +/- 0.05; stretch, 1.76 +/- 0.05; and IGF-I + stretch, 1.83 +/- 0.11).IGF-I induces VEGF gene expression and protein secretion in human mesangial cells via a Src-dependent mechanism.

Country
Italy
Keywords

Vascular Endothelial Growth Factor A, mesangial cells, 610, Gene Expression, VEGF, IGF-I, Glomerular Mesangium, Receptor, IGF Type 1, Phosphatidylinositol 3-Kinases, Pyrimidines, src-Family Kinases, Nephrology, 616, Humans, Stress, Mechanical, Insulin-Like Growth Factor I, Cells, Cultured, Src, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
hybrid