Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2002
versions View all 2 versions

Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K

Authors: Jian-Ping, Yang; Thipparthi R, Reddy; Ky T, Truong; Modem, Suhasini; Flossie, Wong-Staal;

Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K

Abstract

Sam68 is a target of the c-Src tyrosine kinase. We previously showed that overexpression of Sam68 functionally substitutes for, as well as synergies with, HIV-1 Rev in Rev-response element (RRE)-mediated gene expression and virus replication. Here we describe the identification of heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a protein that specifically interacts with Sam68 in vitro and in vivo. HnRNP K did not bind to RRE-RNA directly, but formed a super complex with Sam68 and RRE in vitro. RNase treatment did not change the strength of binding of hnRNP K to Sam68. We demonstrated that hnRNP K significantly inhibited Sam68-mediated, but not Rev-mediated, RRE-dependent gene expression. We further showed that Sam68, but not a non-functional mutant Sam68p21, inhibited transcriptional activation of CT element by hnRNP K. Interestingly, the Sam68p21 with a single amino acid substitution in the nuclear localization domain exhibited less affinity for hnRNP K in vitro. We propose that the direct interaction of Sam68 and hnRNP K adversely affect the activities of both proteins in signal transduction pathways of both transcriptional and post-transcriptional events.

Keywords

RNA-Binding Proteins, Genes, env, DNA-Binding Proteins, Heterogeneous-Nuclear Ribonucleoprotein K, Gene Expression Regulation, Protein Biosynthesis, Two-Hybrid System Techniques, COS Cells, Dactinomycin, Animals, Humans, Protein Processing, Post-Translational, Cells, Cultured, Adaptor Proteins, Signal Transducing, HeLa Cells, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
bronze