Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Caspase-mediated Cleavage of the Ubiquitin-protein Ligase Nedd4 during Apoptosis

Authors: Harvey, K.; Harvey, N.; Michael, J.; Parasivam, G.; Waterhouse, N.; Alnemri, E.; Watters, D.; +1 Authors

Caspase-mediated Cleavage of the Ubiquitin-protein Ligase Nedd4 during Apoptosis

Abstract

The onset of apoptosis is coupled to the proteolytic activation of a family of cysteine proteases, termed caspases. These proteases cleave their target proteins after an aspartate residue. Following caspase activation during apoptosis, a number of specific proteins have been shown to be cleaved. Here we show that Nedd4, a ubiquitin-protein ligase containing multiple WW domains and a calcium/lipid-binding domain, is also cleaved during apoptosis induced by a variety of stimuli including Fas-ligation, gamma-radiation, tumor necrosis factor-alpha, C-8 ceramide, and etoposide treatment. Extracts from apoptotic cells also generated cleavage patterns similar to that seen in vivo, and this cleavage was inhibited by an inhibitor of caspase-3-like proteases. In vitro, Nedd4 was cleaved by a number of caspases, including caspase-1, -3, -6, and -7. By site-directed mutagenesis, one of the in vitro caspase cleavage sites in mouse Nedd4 was mapped to a DQPD237 downward arrow sequence, which is conserved between mouse, rat, and human proteins. This is the first report demonstrating that an enzyme of the ubiquitin pathway is cleaved by caspases during apoptosis.

Country
Australia
Keywords

Cultured, Endosomal Sorting Complexes Required for Transport, Hydrolysis, Nedd4 Ubiquitin Protein Ligases, Ubiquitin-Protein Ligases, Calcium-Binding Proteins, Apoptosis, Peptide Mapping, Tumor Cells, Cell Line, Rats, Ligases, Cysteine Endopeptidases, Mice, Tumor Cells, Cultured, Animals, Humans, fas Receptor, Etoposide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
gold