Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease

Authors: Yu-bing, Dai; Xin-jie, Tan; Wan-fu, Wu; Margaret, Warner; Jan-Åke, Gustafsson;

Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease

Abstract

Parkinson disease (PD) is a progressive neurodegenerative disease whose progression may be slowed, but at present there is no pharmacological intervention that would stop or reverse the disease. Liver X receptor β (LXRβ) is a member of the nuclear receptor super gene family expressed in the central nervous system, where it is important for cortical layering during development and survival of dopaminergic neurons throughout life. In the present study we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of LXRβ as a target for prevention or treatment of PD. The dopaminergic neurons of the substantia nigra of LXRβ −/− mice were much more severely affected by MPTP than were those of their WT littermates. In addition, the number of activated microglia and GFAP-positive astrocytes was higher in the substantia nigra of LXRβ −/− mice than in WT littermates. Administration of the LXR agonist GW3965 to MPTP-treated WT mice protected against loss of dopaminergic neurons and of dopaminergic fibers projecting to the striatum, and resulted in fewer activated microglia and astroglia. Surprisingly, LXRβ was not expressed in the neurons of the substantia nigra but in the microglia and astroglia. We conclude that LXR agonists may have beneficial effects in treatment of PD by modulating the cytotoxic functions of microglia.

Related Organizations
Keywords

Male, Mice, Knockout, Analysis of Variance, Benzylamines, Dopaminergic Neurons, Nerve Tissue Proteins, Orphan Nuclear Receptors, Benzoates, Immunohistochemistry, Substantia Nigra, Mice, Parkinsonian Disorders, Astrocytes, Glial Fibrillary Acidic Protein, Animals, Microglia, Liver X Receptors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
bronze