Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioscience Biotechno...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioscience Biotechnology and Biochemistry
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Functional Divergence of MYB-Related Genes,WEREWOLFandAtMYB23inArabidopsis

Authors: Rumi, Tominaga-Wada; Yuka, Nukumizu; Shusei, Sato; Tomohiko, Kato; Satoshi, Tabata; Takuji, Wada;

Functional Divergence of MYB-Related Genes,WEREWOLFandAtMYB23inArabidopsis

Abstract

Epidermal cell differentiation in Arabidopsis is studied as a model system to understand the mechanisms that determine the developmental end state of plant cells. MYB-related transcription factors are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of two R2R3-type MYB genes, AtMYB23 (MYB23) and WEREWOLF (WER). MYB23 is involved in leaf trichome formation. WER represses root-hair formation. Swapping domains between MYB23 and WER, we found that a low homology region of MYB23 might be involved in ectopic trichome initiation on hypocotyls. MYB23 and all MYB23-WER (MW) chimeric transgenes rescued the increased root-hair phenotype of the wer-1 mutant. Although WER did not rescue the gl1-1 no-trichome phenotype, MYB23 and all MW chimeric transgenes rescued gl1-1. These results suggest that MYB23 acquired a specific function for trichome differentiation during evolution.

Keywords

Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Mutant Chimeric Proteins, Cell Differentiation, Plant Roots, Hypocotyl, Plant Epidermis, Protein Structure, Tertiary, DNA-Binding Proteins, Evolution, Molecular, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Mutation, Amino Acid Sequence, Sequence Alignment, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
bronze