Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Genetics
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Reactive Oxygen Species-Dependent Down-Regulation of Tumor Suppressor Genes PTEN, USP28, DRAM, TIGAR, and CYLD Under Oxidative Stress

Authors: Su-Jung, Kim; Hyun-Joo, Jung; Chang-Jin, Lim;

Reactive Oxygen Species-Dependent Down-Regulation of Tumor Suppressor Genes PTEN, USP28, DRAM, TIGAR, and CYLD Under Oxidative Stress

Abstract

We examined whether steady-state mRNA levels of five tumor suppressor genes are subjected to oxidative stress. Superoxide radical-generating menadione and serum deprivation diminished the steady-state mRNA levels for the genes phosphatase and tensin homolog (PTEN), ubiquitin specific peptidase 28 (USP28), damage-regulated autophagy modulator (DRAM), TP53-induced glycolysis and apoptosis regulator (TIGAR), and cylindromatosis (CYLD). Hydrogen peroxide showed suppression in steady-state mRNA levels for USP28, DRAM, TIGAR, and CYLD but not for PTEN. The steady-state mRNA levels specific for all five genes were enhanced by antioxidants, such as glutathione and N-acetylcysteine. The HepG2 stable transfectants overexpressing the mitochondrial isoform of human glutaredoxin, Grx2a, and containing a relatively low reactive oxygen species (ROS) level were assessed to contain the increased steady-state mRNA levels specific for the five tumor suppressor genes. In brief, the steady-state mRNA levels specific for these genes are negatively regulated by oxidative stress through the mediation of ROS.

Related Organizations
Keywords

Tumor Suppressor Proteins, Intracellular Signaling Peptides and Proteins, PTEN Phosphohydrolase, Down-Regulation, Gene Expression, Membrane Proteins, Hep G2 Cells, Antioxidants, Phosphoric Monoester Hydrolases, Deubiquitinating Enzyme CYLD, Mitochondria, Oxidative Stress, Superoxides, Tumor Cells, Cultured, Humans, Genes, Tumor Suppressor, RNA, Messenger, Apoptosis Regulatory Proteins, Reactive Oxygen Species, Glutaredoxins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%