Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B
Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B
Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.
- University of Virginia United States
- University of California, Santa Barbara United States
- Harvard University United States
- Simons Foundation United States
- Flatiron Institute United States
Articles, Spindle Apparatus, Microtubules, Chromosomes, Meiosis, Cell Line, Tumor, Chromosome Segregation, Animals, Humans, Spindle Poles, Anaphase, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Kinetochores
Articles, Spindle Apparatus, Microtubules, Chromosomes, Meiosis, Cell Line, Tumor, Chromosome Segregation, Animals, Humans, Spindle Poles, Anaphase, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Kinetochores
4 Research products, page 1 of 1
- 2004IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
