Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Sensesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Senses
Article
Data sources: UnpayWall
Chemical Senses
Article . 2010 . Peer-reviewed
Data sources: Crossref
Chemical Senses
Article . 2011
versions View all 2 versions

Genetics and Bitter Taste Responses to Goitrin, a Plant Toxin Found in Vegetables

Authors: Stephen, Wooding; Howard, Gunn; Purita, Ramos; Sophie, Thalmann; Chao, Xing; Wolfgang, Meyerhof;

Genetics and Bitter Taste Responses to Goitrin, a Plant Toxin Found in Vegetables

Abstract

The perceived bitterness of cruciferous vegetables such as broccoli varies from person to person, but the functional underpinnings of this variation are not known. Some evidence suggests that it arises, in part, from variation in ability to perceive goitrin (5-vinyloxazolidine-2-thione), a potent antithyroid compound found naturally in crucifers. Individuals vary in ability to perceive synthetic compounds similar to goitrin, such as 6-propyl-2-thiouracil (PROP) and phenylthiocarbamide (PTC), as the result of mutations in the TAS2R38 gene, which encodes a bitter taste receptor. This suggests that taste responses to goitrin itself may be mediated by TAS2R38. To test this hypothesis, we examined the relationships between genetic variation in TAS2R38, functional variation in the encoded receptor, and threshold taste responses to goitrin, PROP, and PTC in 50 subjects. We found that threshold responses to goitrin were associated with responses to both PROP (P = 8.9 x 10(-4); r(s) = 0.46) and PTC (P = 7.5 x 10(-4); r(s) = 0.46). However, functional assays revealed that goitrin elicits a weaker response from the sensitive (PAV) allele of TAS2R38 (EC(50) = 65.0 μM) than do either PROP (EC(50) = 2.1 μM) or PTC (EC(50) = 1.1 μM) and no response at all from the insensitive (AVI) allele. Furthermore, goitrin responses were significantly associated with mutations in TAS2R38 (P = 9.3 × 10(-3)), but the same mutations accounted for a smaller proportion of variance in goitrin response (r(2) = 0.16) than for PROP (r(2) = 0.50) and PTC (r(2) = 0.57). These findings suggest that mutations in TAS2R38 play a role in shaping goitrin perception, but the majority of variance must be explained by other factors.

Keywords

Taste Receptors, Type 2, Genotype, Phenylthiourea, Polymorphism, Single Nucleotide, Receptors, G-Protein-Coupled, Phenotype, Propylthiouracil, Taste, Taste Threshold, Humans, Alleles, Oxazolidinones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
bronze