Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
Data sources: UnpayWall
Diabetes
Article . 2007 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 2007
versions View all 2 versions

Wnt10b Inhibits Obesity in ob/ob and Agouti Mice

Authors: Charles F. Burant; Wendy S. Wright; Sona Kang; Ormond A. MacDougald; Vedrana S. Susulic; Tyler C. Prestwich; Christina N. Bennett; +5 Authors

Wnt10b Inhibits Obesity in ob/ob and Agouti Mice

Abstract

The Wnt family of secreted signaling molecules has profound effects on diverse developmental processes, including the fate of mesenchymal progenitors. While activation of Wnt signaling blocks adipogenesis, inhibition of endogenous Wnt/β-catenin signaling by Wnt10b promotes spontaneous preadipocyte differentiation. Transgenic mice with expression of Wnt10b from the FABP4 promoter (FABP4-Wnt10b) have less adipose tissue when maintained on a normal chow diet and are resistant to diet-induced obesity. Here we demonstrate that FABP4-Wnt10b mice largely avert weight gain and metabolic abnormalities associated with genetic obesity. FABP4-Wnt10b mice do not gain significant body weight on the ob/ob background, and at 8 weeks of age, they have an ∼70% reduction in visceral and subcutaneous adipose tissues compared with ob/ob mice. Similarly, on the lethal yellow agouti (Ay) background, FABP4-Wnt10b mice have 50–70% less adipose tissue weight and circulating leptin at 5 months of age. Wnt10b-Ay mice are more glucose tolerant and insulin sensitive than Ay controls, perhaps due to reduced expression and circulation of resistin. Reduced expression of inflammatory cytokines may also contribute to improved glucose homeostasis.

Related Organizations
Keywords

Blood Glucose, Leptin, Male, Panniculitis, Mice, Transgenic, Fatty Acid-Binding Proteins, Wnt Proteins, Disease Models, Animal, Mice, Oxygen Consumption, Adipose Tissue, Proto-Oncogene Proteins, Agouti Signaling Protein, Animals, Intercellular Signaling Peptides and Proteins, Female, Obesity, Insulin Resistance, Energy Intake

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 10%
Top 10%
Top 1%
bronze