Distinct Roles of LAFL Network Genes in Promoting the Embryonic Seedling Fate in the Absence of VAL Repression
Distinct Roles of LAFL Network Genes in Promoting the Embryonic Seedling Fate in the Absence of VAL Repression
AbstractThe transition between seed and seedling phases of development is coordinated by an interaction between the closely related ABSCISIC ACID-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2 (LEC2; AFL) and VIVIPAROUS1/ABI3-LIKE (VAL) clades of the B3 transcription factor family that respectively activate and repress the seed maturation program. In the val1 val2 double mutant, derepression of the LEC1, LEC1-LIKE (L1L), and AFL (LAFL) network is associated with misexpression of embryonic characteristics resulting in arrested seedling development. We show that while the frequency of the embryonic fate in val1 val2 seedlings depends on the developmental timing of seed rescue, VAL proteins repress LAFL genes during germination, but not during seed development. Quantitative analysis of LAFL mutants that suppress the val1 val2 seedling phenotype revealed distinct roles of LAFL genes in promoting activation of the LAFL network. LEC2 and FUS3 are both essential for coordinate activation of the network, whereas effects of LEC1, L1L, and ABI3 are additive. Suppression of the val1 val2 seedling phenotype by the B3 domain-deficient abi3-12 mutation indicates that ABI3 activation of the LAFL network requires the B3 DNA-binding domain. In the VAL-deficient background, coordinate regulation of the LAFL network is observed over a wide range of genetic and developmental conditions. Our findings highlight distinct functional roles and interactions of LAFL network genes that are uncovered in the absence of VAL repressors.
- University of Florida United States
Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Arabidopsis, Gene Expression Regulation, Developmental, Germination, Gene Expression Regulation, Plant, Seedlings, Mutation, Seeds, Gene Regulatory Networks, Transcription Factors
Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Arabidopsis, Gene Expression Regulation, Developmental, Germination, Gene Expression Regulation, Plant, Seedlings, Mutation, Seeds, Gene Regulatory Networks, Transcription Factors
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).80 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
