Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Physical Interaction and Mutual Transrepression between CCAAT/Enhancer-binding Protein β and the p53 Tumor Suppressor

Authors: Tanja Schneider-Merck; Mark Christian; Yvonne Pohnke; Jan J. Brosens; Birgit Gellersen; Rita Kempf;

Physical Interaction and Mutual Transrepression between CCAAT/Enhancer-binding Protein β and the p53 Tumor Suppressor

Abstract

The tumor suppressor protein p53 is not only involved in defending cells against genotoxic insults but is also implicated in differentiation processes, a function that it shares with the CCAAT/enhancer-binding protein beta (C/EBPbeta). We previously reported an up-regulation of both factors in the cycle-dependent differentiation process of human endometrial stromal cells, termed decidualization. C/EBPbeta-mediated activation of a decidualization marker, the decidual prolactin promoter, was antagonized by p53. Here we report that C/EBPbeta in turn represses the transcriptional activity of p53. Competition for limiting amounts of coactivator CREB-binding protein/p300 was ruled out as the underlying mechanism of transrepression. Physical interaction between p53 and C/EBPbeta was demonstrated in vitro and in vivo and shown to depend on the C-terminal domains of both proteins. In gel shift experiments, C/EBPbeta reduced complex formation between p53 and its response element. Conversely, p53 strongly inhibited binding of endogenous C/EBPbeta from endometrial stromal cells to the C/EBP-responsive region in the decidual prolactin promoter. The observed negative cross-talk between p53 and C/EBPbeta is likely to impact expression of their respective target genes.

Keywords

Osteosarcoma, CCAAT-Enhancer-Binding Protein-beta, Electrophoretic Mobility Shift Assay, Response Elements, Endometrium, Gene Expression Regulation, Cell Line, Tumor, COS Cells, Chlorocebus aethiops, Animals, Humans, Female, p300-CBP Transcription Factors, Stromal Cells, Tumor Suppressor Protein p53

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
gold