<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
PKG inhibits TCF signaling in colon cancer cells by blocking β-catenin expression and activating FOXO4

PKG inhibits TCF signaling in colon cancer cells by blocking β-catenin expression and activating FOXO4
Activation of cGMP-dependent protein kinase (PKG) has anti-tumor effects in colon cancer cells but the mechanisms are not fully understood. This study has examined the regulation of beta-catenin/TCF signaling, as this pathway has been highlighted as central to the anti-tumor effects of PKG. We show that PKG activation in SW620 cells results in reduced beta-catenin expression and a dramatic inhibition of TCF-dependent transcription. PKG did not affect protein stability, nor did it increase phosphorylation of the amino-terminal Ser33/37/Thr41 residues that are known to target beta-catenin for degradation. However, we found that PKG potently inhibited transcription from a luciferase reporter driven by the human CTNNB1 promoter, and this corresponded to reduced beta-catenin mRNA levels. Although PKG was able to inhibit transcription from both the CTNNB1 and TCF reporters, the effect on protein levels was less consistent. Ectopic PKG had a marginal effect on beta-catenin protein levels in SW480 and HCT116 but was able to inhibit TCF-reporter activity by over 80%. Investigation of alternative mechanisms revealed that cJun-N-terminal kinase (JNK) activation was required for the PKG-dependent regulation of TCF activity. PKG activation caused beta-catenin to bind to FOXO4 in colon cancer cells, and this required JNK. Activation of PKG was also found to increase the nuclear content of FOXO4 and increase the expression of the FOXO target genes MnSOD and catalase. FOXO4 activation was required for the inhibition of TCF activity as FOXO4-specific short-interfering RNA completely blocked the inhibitory effect of PKG. These data illustrate a dual-inhibitory effect of PKG on TCF activity in colon cancer cells that involves reduced expression of beta-catenin at the transcriptional level, and also beta-catenin sequestration by FOXO4 activation.
- University of Maine United States
- Oregon State University United States
- Georgia Regents University United States
- University of Chicago United States
Glycogen Synthase Kinase 3 beta, JNK Mitogen-Activated Protein Kinases, Cell Cycle Proteins, Forkhead Transcription Factors, Glycogen Synthase Kinase 3, Cell Line, Tumor, Colonic Neoplasms, Cyclic GMP-Dependent Protein Kinases, Humans, TCF Transcription Factors, beta Catenin, Signal Transduction, Transcription Factors
Glycogen Synthase Kinase 3 beta, JNK Mitogen-Activated Protein Kinases, Cell Cycle Proteins, Forkhead Transcription Factors, Glycogen Synthase Kinase 3, Cell Line, Tumor, Colonic Neoplasms, Cyclic GMP-Dependent Protein Kinases, Humans, TCF Transcription Factors, beta Catenin, Signal Transduction, Transcription Factors
13 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).67 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%