Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana
doi: 10.1093/jxb/erm222
pmid: 17928369
Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana
Polygalacturonases (PGs) have been proposed to play an important role in the process of cell separation. The Arabidopsis thaliana genome contains 69 annotated genes that by amino acid homology and transcript organization could be classified as putative PGs and these can be grouped into multiple clades. An analysis of five members located in two separate clades, using reporter fusion constructs and reverse transcription-PCR, revealed that whilst these PGs exhibit high sequence similarity they have distinct patterns of spatial and temporal expression. Sites of expression include the aleurone and endosperm cells surrounding the emerging radicle in a germinating seed, the cortical cells adjacent to the developing lateral root, the abscission zones of floral organs, the dehiscence zone of anthers and siliques, and pollen grains. Silencing of an abscission-related PG (At2g41850), using a T-DNA insertion strategy, delayed the time-course of floral organ loss but did not prevent shedding from taking place. These observations are discussed with regard to the contribution that PGs may play during the life cycle of a plant.
- University of Nottingham United Kingdom
Polygalacturonase, Arabidopsis Proteins, Gene Expression Regulation, Plant, Multigene Family, Arabidopsis, Cell Separation, Phylogeny
Polygalacturonase, Arabidopsis Proteins, Gene Expression Regulation, Plant, Multigene Family, Arabidopsis, Cell Separation, Phylogeny
7 Research products, page 1 of 1
- 2017IsRelatedTo
- IsSupplementTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- IsSupplementTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).159 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
