Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article
License: implied-oa
Data sources: UnpayWall
Journal of Experimental Botany
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana

Authors: Zinnia H, González-Carranza; Katherine A, Elliott; Jeremy A, Roberts;

Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana

Abstract

Polygalacturonases (PGs) have been proposed to play an important role in the process of cell separation. The Arabidopsis thaliana genome contains 69 annotated genes that by amino acid homology and transcript organization could be classified as putative PGs and these can be grouped into multiple clades. An analysis of five members located in two separate clades, using reporter fusion constructs and reverse transcription-PCR, revealed that whilst these PGs exhibit high sequence similarity they have distinct patterns of spatial and temporal expression. Sites of expression include the aleurone and endosperm cells surrounding the emerging radicle in a germinating seed, the cortical cells adjacent to the developing lateral root, the abscission zones of floral organs, the dehiscence zone of anthers and siliques, and pollen grains. Silencing of an abscission-related PG (At2g41850), using a T-DNA insertion strategy, delayed the time-course of floral organ loss but did not prevent shedding from taking place. These observations are discussed with regard to the contribution that PGs may play during the life cycle of a plant.

Related Organizations
Keywords

Polygalacturonase, Arabidopsis Proteins, Gene Expression Regulation, Plant, Multigene Family, Arabidopsis, Cell Separation, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    159
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
159
Top 1%
Top 10%
Top 10%
hybrid