Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Positional cloning of the wheat vernalization gene VRN1

Authors: Yan, L; Loukoianov, A; Tranquilli, G; Helguera, M; Fahima, T; Dubcovsky, J;

Positional cloning of the wheat vernalization gene VRN1

Abstract

Winter wheats require several weeks at low temperature to flower. This process, vernalization, is controlled mainly by the VRN1 gene. Using 6,190 gametes, we found VRN1 to be completely linked to MADS-box genes AP1 and AGLG1 in a 0.03-centimorgan interval flanked by genes Cysteine and Cytochrome B5 . No additional genes were found between the last two genes in the 324-kb Triticum monococcum sequence or in the colinear regions in rice and sorghum. Wheat AP1 and AGLG1 genes were similar to Arabidopsis meristem identity genes AP1 and AGL2 , respectively. AP1 transcription was regulated by vernalization in both apices and leaves, and the progressive increase of AP1 transcription was consistent with the progressive effect of vernalization on flowering time. Vernalization was required for AP1 transcription in apices and leaves in winter wheat but not in spring wheat. AGLG1 transcripts were detected during spike differentiation but not in vernalized apices or leaves, suggesting that AP1 acts upstream of AGLG1 . No differences were detected between genotypes with different VRN1 alleles in the AP1 and AGLG1 coding regions, but three independent deletions were found in the promoter region of AP1 . These results suggest that AP1 is a better candidate for VRN1 than AGLG1 . The epistatic interactions between vernalization genes VRN1 and VRN2 suggested a model in which VRN2 would repress directly or indirectly the expression of AP1 . A mutation in the promoter region of AP1 would result in the lack of recognition of the repressor and in a dominant spring growth habit.

Keywords

Genetic Markers, Base Sequence, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Molecular, Chromosome Mapping, Genetic Variation, DNA-Binding Proteins, Contig Mapping, Genetics, Seasons, Cloning, Molecular, Alleles, Phylogeny, Triticum, Cloning, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 0.1%
Green
bronze