Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Light Chain 1 of Microtubule-associated Protein 1B Can Negatively Regulate the Action of Pes1

Authors: Alexandra F, Lerch-Gaggl; Kai, Sun; Stephen A, Duncan;

Light Chain 1 of Microtubule-associated Protein 1B Can Negatively Regulate the Action of Pes1

Abstract

Pes1 was first identified as the locus affected in the zebrafish mutant pescadillo, which exhibits severe defects in gut and liver development. It has since been demonstrated that loss of Pes1 expression in mammals and yeast affects ribosome biogenesis, resulting in a block in cell proliferation. Pes1 contains a BRCA1 C-terminal domain, a structural motif that has been shown to facilitate protein-protein interactions, suggesting that Pes1 has binding partners. We used a yeast two-hybrid screen to identify putative interacting proteins. We found that light chain 1 of the microtubule-associated protein 1B (Mtap1b-LC1) could partner with Pes1, and deletion analyses revealed a specific interaction of Mtap1b-LC1 with the Pes1 BRCA1 C-terminal domain. We confirmed the integrity of the interaction between Pes1 and Mtap1b-LC1 by co-immunoprecipitation experiments. Protein localization studies in NIH3T3 cells revealed that exogenously expressed Pes1 was typically restricted to nuclei and nucleoli. However, exogenous Pes1 was found predominantly in the cytoplasm in cells that were forced to express Mtap1b-LC1. We also observed that the expression of endogenous Pes1 protein was significantly reduced or undetectable in nuclei when Mtap1b-LC1 was overexpressed, implying that a dynamic interaction exists between the two proteins and that Mtap1b-LC1 has the potential to negatively impact Pes1 function. Finally, we demonstrated that, as is the case when Pes1 expression is depleted by shRNA, overexpression of Mtap1b-LC1 resulted in diminished proliferation of NIH3T3 cells, suggesting that Mtap1b-LC1 has the potential to repress cell proliferation by modulating the nucleolar levels of Pes1.

Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Proteins, RNA-Binding Proteins, Cell Cycle Proteins, Saccharomyces cerevisiae, Cell Line, Mice, Two-Hybrid System Techniques, Animals, Humans, RNA Interference, Microtubule-Associated Proteins, Gene Deletion, Cell Proliferation, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
gold