Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2001
versions View all 3 versions

TRAPP I Implicated in the Specificity of Tethering in ER-to-Golgi Transport

Authors: Sacher, Michael; Barrowman, Jemima; Wang, Wei; Horecka, Joe; Zhang, Yueyi; Pypaert, Marc; Ferro-Novick, Susan;

TRAPP I Implicated in the Specificity of Tethering in ER-to-Golgi Transport

Abstract

TRAPP is a conserved protein complex required early in the secretory pathway. Here, we report two forms of TRAPP, TRAPP I and TRAPP II, that mediate different transport events. Using chemically pure TRAPP I and COPII vesicles, we have reconstituted vesicle targeting in vitro. The binding of COPII vesicles to TRAPP I is specific, blocked by GTPgammaS, and, surprisingly, does not require other tethering factors. Our findings imply that TRAPP I is the receptor on the Golgi for COPII vesicles. Once the vesicle binds to TRAPP I, the small GTP binding protein Ypt1p is activated and other tethering factors are recruited.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Glycoside Hydrolases, Macromolecular Substances, Cathepsin A, Golgi Apparatus, Carboxypeptidases, Saccharomyces cerevisiae, Endoplasmic Reticulum, Substrate Specificity, Centrifugation, Density Gradient, Protein Isoforms, Molecular Biology, Temperature, Membrane Proteins, Cell Biology, Protein Subunits, Protein Transport, Guanosine 5'-O-(3-Thiotriphosphate), Mutation, COP-Coated Vesicles, Carrier Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    216
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
216
Top 10%
Top 1%
Top 1%
hybrid