Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Endocrinol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Endocrinology
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Direct Binding and Activation of Protein Kinase C Isoforms by Aldosterone and 17β-Estradiol

Authors: Rodrigo, Alzamora; Laura R, Brown; Brian J, Harvey;

Direct Binding and Activation of Protein Kinase C Isoforms by Aldosterone and 17β-Estradiol

Abstract

AbstractProtein kinase C (PKC) is a signal transduction protein that has been proposed to mediate rapid responses to steroid hormones. Previously, we have shown aldosterone directly activates PKCα whereas 17β-estradiol activates PKCα and PKCδ; however, neither the binding to PKCs nor the mechanism of action has been established. To determine the domains of PKCα and PKCδ involved in binding of aldosterone and 17β-estradiol, glutathione S-transferase fusion recombinant PKCα and PKCδ mutants were used to perform in vitro binding assays with [3H]aldosterone and [3H]17β-estradiol. 17β-Estradiol bound both PKCα and PKCδ but failed to bind PKC mutants lacking a C2 domain. Similarly, aldosterone bound only PKCα and mutants containing C2 domains. Thus, the C2 domain is critical for binding of these hormones. Binding affinities for aldosterone and 17β-estradiol were between 0.5–1.0 nM. Aldosterone and 17β-estradiol competed for binding to PKCα, suggesting they share the same binding site. Phorbol 12,13-dybutyrate did not compete with hormone binding; furthermore, they have an additive effect on PKC activity. EC50 for activation of PKCα and PKCδ by aldosterone and 17β-estradiol was approximately 0.5 nM. Immunoblot analysis using a phospho-PKC antibody revealed that upon binding, PKCα and PKCδ undergo autophosphorylation with an EC50 in the 0.5–1.0 nm range. 17β-Estradiol activated PKCα and PKCδ in estrogen receptor-positive and -negative breast cancer cells (MCF-7 and HCC-38, respectively), suggesting estrogen receptor expression is not required for 17β-estradiol-induced PKC activation. The present results provide first evidence for direct binding and activation of PKCα and PKCδ by steroid hormones and the molecular mechanisms involved.

Keywords

Dose-Response Relationship, Drug, Estradiol, Recombinant Fusion Proteins, Esters, Enzyme Activation, Kinetics, Cell Line, Tumor, Mutation, Humans, Protein Isoforms, Steroids, Phosphorylation, Aldosterone, Protein Kinase C, Glutathione Transferase, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research