Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biology of the Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology of the Cell
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Expression and subcellular localization of the AQP8 and AQP1 water channels in the mouse gall‐bladder epithelium

Authors: CALAMITA, Giuseppe; PORTINCASA, Piero; SVELTO, Maria; FERRI D; BAZZINI C; MAZZONE A; BOTTA G; +3 Authors

Expression and subcellular localization of the AQP8 and AQP1 water channels in the mouse gall‐bladder epithelium

Abstract

Background information. Transepithelial transport of water is one of the most distinctive functions by which the gall‐bladder rearranges its bile content. Water is reabsorbed from the gall‐bladder lumen during fasting, whereas it is secreted into the lumen following meal ingestion. Nevertheless, the molecular mechanism by which water is transported across the gall‐bladder epithelium remains mostly unclear.Results. In the present study, we investigate the presence and subcellular localization of AQP (aquaporin) water channels in the mouse gall‐bladder epithelium. Considerable AQP8 mRNA was detected in the gall‐bladder epithelium of mouse, calf, rabbit, guinea pig and man. Studies of subcellular localization were then addressed to the mouse gall‐bladder where the transcript of a second AQP, AQP1, was also detected. Immunoblotting experiments confirmed the presence of AQP8 and AQP1 at a protein level. Immunohistochemistry showed intense expression of AQP8 and AQP1 in the gall‐bladder epithelial cells where AQP8 was localized in the apical membrane, whereas AQP1 was seen both in the apical and basolateral membranes, and in vesicles located in the subapical cytoplasm.Conclusions. The pattern of subcellular distribution of AQP8 and AQP1 strongly corroborates the hypothesis of a transcellular route for the movement of water across the gall‐bladder epithelium. Osmotic water would cross the apical membrane through AQP8 and AQP1, although AQP1 would be the facilitated pathway for the movement of water across the basolateral membrane. The presence of two distinct AQPs in the apical membrane is an unusual finding and may relate to the membrane's ability both to absorb and secrete fluid. It is tempting to hypothesize that AQP1 is hormonally translocated to the gall‐bladder apical membrane to secrete water as in the bile duct epithelium, a functional homologue of the gall‐bladder epithelium, whereas apical AQP8 may account for the absorption of water from gall‐bladder bile.

Keywords

Male, 570, Cytoplasm, Mice, Inbred BALB C, Aquaporin 1, aquaporin; cystic bile; gall-bladder apical membrane; hepatobiliary tract; water transport, Cell Membrane, Guinea Pigs, Immunoblotting, Molecular Sequence Data, Gallbladder, Biological Transport, Aquaporins, Immunohistochemistry, Epithelium, Hormones, Ion Channels, Mice, Gene Expression Regulation, Animals, Amino Acid Sequence, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
bronze