Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Carbohydrate Polymer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carbohydrate Polymers
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus

Authors: Juyi, Song; Hui, Chen; Yafeng, Wei; Jian, Liu;

Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus

Abstract

This study aimed to elucidate the antimicrobial efficacy of carboxymethylated β-glucan (CMG) against Staphylococcus aureus and the possible underlying mechanisms. β-Glucan (BG) was extracted from naked barley bran, then ultrafiltrated to obtain four fractions (BG-1, BG-2, BG-3, BG-4). Five types of CMG were prepared using an amidation reaction and characterized by FTIR spectroscopy. The underlying mechanisms were studied using changes in the transmembrane electrical potential, pH gradient, and intracellular ATP, confocal laser scanning microscopy, and electron microscopy. The data showed that CMG-2 had the highest antibacterial activity. CMG-2 induced membrane permeabilization, morphological changes, and structural disruption in S. aureus cells, with the formation of blebs and microspheres, the disruption of cell walls and membranes, and cell lysis. Our findings provide insight into the antimicrobial mechanism of CMG against S. aureus, which will provide a foundation for developing CMG as a novel antibacterial agent in the food and biomedical fields.

Keywords

Staphylococcus aureus, beta-Glucans, Surface Properties, Hordeum, Microbial Sensitivity Tests, Particle Size, Anti-Bacterial Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 1%
Top 10%
Top 10%