Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2003
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions

The Cell Cycle-regulated Protein Human GTSE-1 Controls DNA Damage-induced Apoptosis by Affecting p53 Function

Authors: Martin Monte; Claudio Schneider; Claudio Schneider; Roberta Benetti; Peter Sandy; Giacomo Buscemi; Giannino Del Sal; +1 Authors

The Cell Cycle-regulated Protein Human GTSE-1 Controls DNA Damage-induced Apoptosis by Affecting p53 Function

Abstract

GTSE-1 (G2 and S phase-expressed-1) protein is specifically expressed during S and G2 phases of the cell cycle. It is mainly localized to the microtubules and when overexpressed delays the G2 to M transition. Here we report that human GTSE-1 (hGTSE-1) protein can negatively regulate p53 transactivation function, protein levels, and p53-dependent apoptosis. We identified a physical interaction between the C-terminal regulatory domain of p53 and the C-terminal region of hGTSE-1 that is necessary and sufficient to down-regulate p53 activity. Furthermore, we provide evidence that hGTSE-1 is able to control p53 function in a cell cycle-dependent fashion. hGTSE-1 knock-down by small interfering RNA resulted in a S/G2-specific increase of p53 levels as well as cell sensitization to DNA damage-induced apoptosis during these phases of the cell cycle. Altogether, this work suggests a physiological role of hGTSE-1 in apoptosis control after DNA damage during S and G2 phases through regulation of p53 function.

Keywords

G2 Phase, Blotting, Western, Genetic Vectors, Down-Regulation, Mitosis, Apoptosis, Biochemistry, Genes, Reporter, Antibodies, Monoclonal; Blotting, Western; Cell Cycle; Down-Regulation; Flow Cytometry; G2 Phase; Gene Silencing; Genes, Reporter; Genetic Vectors; Humans; Microscopy, Fluorescence; Microtubule-Associated Proteins; Mitosis; Plasmids; Precipitin Tests; Protein Binding; Protein Structure, Tertiary; RNA, Small Interfering; S Phase; Transfection; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Apoptosis; DNA Damage; Biochemistry, Apoptosis ; DNA Damage ; Antibodies, Monoclonal ; Blotting, Western ; Cell Cycle ; Down-Regulation ; Flow Cytometry ; G2 Phase ; Gene Silencing ; Genes, Reporter ; Genetic Vectors ; Humans ; Microscopy, Fluorescence ; Microtubule-Associated Proteins ; Mitosis ; Plasmids ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; RNA, Small Interfering ; S Phase ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53, Humans, Gene Silencing, RNA, Small Interfering, Molecular Biology, Cell Cycle, Antibodies, Monoclonal, Cell Biology, Flow Cytometry, Precipitin Tests, Protein Structure, Tertiary, Microscopy, Fluorescence, Microtubule-Associated Proteins, DNA Damage, Plasmids, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
Green
gold