<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Anthrax lethal factor and edema factor act on conserved targets in Drosophila

Anthrax lethal factor and edema factor act on conserved targets in Drosophila
Many bacterial toxins act on conserved components of essential host-signaling pathways. One consequence of this conservation is that genetic model organisms such as Drosophila melanogaster can be used for analyzing the mechanism of toxin action. In this study, we characterize the activities of two anthrax virulence factors, lethal factor (LF) and edema factor, in transgenic Drosophila . LF is a zinc metalloprotease that cleaves and inactivates most human mitogen-activated protein kinase (MAPK) kinases (MAPKKs). We found that LF similarly cleaves the Drosophila MAPK kinases Hemipterous (Hep) and Licorne in vitro . Consistent with these observations, expression of LF in Drosophila inhibited the Hep/c-Jun N-terminal kinase pathway during embryonic dorsal closure and the related process of adult thoracic closure. Epistasis experiments confirmed that LF acts at the level of Hep. We also found that LF inhibits Ras/MAPK signaling during wing development and that LF acts upstream of MAPK and downstream of Raf, consistent with LF acting at the level of Dsor. In addition, we found that edema factor, a potent adenylate cyclase, inhibits the hh pathway during wing development, consistent with the known role of cAMP-dependent PKA in suppressing the Hedgehog response. These results demonstrate that anthrax toxins function in Drosophila as they do in mammalian cells and open the way to using Drosophila as a multicellular host system for studying the in vivo function of diverse toxins and virulence factors.
- University of California, San Diego United States
- Harvard University United States
- Massachusetts General Hospital United States
Mitogen-Activated Protein Kinase Kinases, Antigens, Bacterial, Bacterial Toxins, Molecular Sequence Data, Gene Expression Regulation, Developmental, Viper Venoms, Drosophila melanogaster, Phenotype, Animals, Drosophila Proteins, Humans, Wings, Animal, Hedgehog Proteins, Amino Acid Sequence, Sequence Alignment, Conserved Sequence, Signal Transduction
Mitogen-Activated Protein Kinase Kinases, Antigens, Bacterial, Bacterial Toxins, Molecular Sequence Data, Gene Expression Regulation, Developmental, Viper Venoms, Drosophila melanogaster, Phenotype, Animals, Drosophila Proteins, Humans, Wings, Animal, Hedgehog Proteins, Amino Acid Sequence, Sequence Alignment, Conserved Sequence, Signal Transduction
40 Research products, page 1 of 4
- 2020IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%