Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

αvβ3 Integrins Mediate Flow-Induced NF-κB Activation, Proinflammatory Gene Expression, and Early Atherogenic Inflammation

Authors: A. Wayne Orr; Patrick Albert; Jie Chen; Marshall C. McInnis; Arif Yurdagul; Jonette M Green;

αvβ3 Integrins Mediate Flow-Induced NF-κB Activation, Proinflammatory Gene Expression, and Early Atherogenic Inflammation

Abstract

Endothelial cell interactions with transitional matrix proteins, such as fibronectin, occur early during atherogenesis and regulate shear stress-induced endothelial cell activation. Multiple endothelial cell integrins bind transitional matrix proteins, including α5β1, αvβ3, and αvβ5. However, the role these integrins play in mediating shear stress-induced endothelial cell activation remains unclear. Therefore, we sought to elucidate which integrin heterodimers mediate shear stress-induced endothelial cell activation and early atherogenesis. We now show that inhibiting αvβ3 integrins (S247, siRNA), but not α5β1 or αvβ5, blunts shear stress-induced proinflammatory signaling (NF-κB, p21-activated kinase) and gene expression (ICAM1, VCAM1). Importantly, inhibiting αvβ3 did not affect cytokine-induced proinflammatory responses or inhibit all shear stress-induced signaling, because Akt, endothelial nitric oxide synthase, and extracellular regulated kinase activation remained intact. Furthermore, inhibiting αv integrins (S247), but not α5 (ATN-161), in atherosclerosis-prone apolipoprotein E knockout mice significantly reduced vascular remodeling after acute induction of disturbed flow. S247 treatment similarly reduced early diet-induced atherosclerotic plaque formation associated with both diminished inflammation (expression of vascular cell adhesion molecule 1, plaque macrophage content) and reduced smooth muscle incorporation. Inducible, endothelial cell-specific αv integrin deletion similarly blunted inflammation in models of disturbed flow and diet-induced atherogenesis but did not affect smooth muscle incorporation. Our studies identify αvβ3 as the primary integrin heterodimer mediating shear stress-induced proinflammatory responses and as a key contributor to early atherogenic inflammation.

Keywords

Inflammation, Male, Mice, Knockout, NF-kappa B, Endothelial Cells, Gene Expression, Vascular Cell Adhesion Molecule-1, Atherosclerosis, Integrin alphaVbeta3, Animals, Stress, Mechanical, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 1%
Top 10%
Top 10%
hybrid