Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Divalent cations and the relationship between αA and βA domains in integrins

Authors: Friedrich Rippmann; Jian-Ping Xiong; Jutta Welge; Simon L. Goodman; M. Amin Arnaout; Kah-Tong Seow;

Divalent cations and the relationship between αA and βA domains in integrins

Abstract

Integrins contain either one or two von Willebrand factor A-like domains, which are primary ligand and cation binding regions in the molecules. Here we examine the first structure of an A domain of a beta subunit, in alphanubeta3 and compare it to known A domain structures of alpha subunits. Ligand binding to immobilized alphanubeta3 domain is stimulated by Ca2+ rather than inhibited by it. Biochemical, cell biological and structural evidence suggests that the A domain is a major site of ligand interaction in alphanubeta3. The Arg-Gly-Asp based inhibitor cilengitide (EMD 121974) inhibites ligand interaction with transmembrane-truncated alphanubeta3 in the presence of either Ca2+ or Mn2+ ions, and does so with similar kinetics. The alphanubeta3 structure reveals that both the alphaA and betaA domains share common structural cores. But, in contrast to alphaA, the betaA domain has three cation binding sites, that are involved either directly or indirectly in ligand binding. Structural alignment of alphaA and betaA domains reveals additional loops unique only to the betaA domain and much evidence support that that these loops are important for ligand binding specificity and for the interaction between alpha and beta subunits. Since the position of these loops are evolutionary conserved but their primary sequence varies between the various betaA domains, they represents potential targets for dissecting functional diversity among integrins.

Related Organizations
Keywords

Models, Molecular, Integrins, Binding Sites, Protein Conformation, Ligands, Recombinant Proteins, Protein Structure, Tertiary, Cations, Humans, Receptors, Vitronectin, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average