Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Improved metabolic control by depletion of Liver X Receptors in mice

Authors: Gertrud U, Schuster; Lisen, Johansson; Silke, Kietz; Thomas M, Stulnig; Paolo, Parini; Jan-Ake, Gustafsson;

Improved metabolic control by depletion of Liver X Receptors in mice

Abstract

Liver X Receptors (LXRs) coordinate the regulation of lipid and carbohydrate metabolism and insulin signaling. LXR-ligands lower plasma glucose in hyperglycemic rodents and have consequently been proposed as anti-diabetic agents. We investigated the metabolic effects induced by high carbohydrate diet in LXRalpha(-/-)beta(-/-) mice. Irrespective of diets, LXRalpha(-/-)beta(-/-) mice had reduced fatty acid, insulin, and C-peptide plasma levels than wild-type controls, suggesting a lower insulin production. High carbohydrate diet decreased the plasma glucose levels and the homeostasis model assessment (HOMA)-index in LXRalpha(-/-)beta(-/-) mice and increased hepatic triglyceride content and mRNA levels of lipogenic genes in wild-type and LXRalpha(-/-)beta(-/-) mice, proportionally. In wild-type mice high carbohydrate diet was associated with induced expression of LXR (1.5-fold), despite unchanged SREBP-1c expression. LXRalpha(-/-)beta(-/-) mice responded to this diet by induction of SREBP-1c. Our study suggests that in LXRalpha(-/-)beta(-/-) mice, glucose utilization seems to be privileged possibly due to reduced circulating free fatty acid levels.

Keywords

Blood Glucose, Receptors, Cytoplasmic and Nuclear, Lipid Metabolism, Orphan Nuclear Receptors, Diet, DNA-Binding Proteins, Mice, Animals, Carbohydrate Metabolism, Insulin, Gene Deletion, Liver X Receptors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%