Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Leukocyte Biology
Article . 2015 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 3 versions

Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation

Authors: CAMILLI, GIORGIO; Cassotta, Antonino; BATTELLA, SIMONE; PALMIERI, Gabriella; SANTONI, Angela; PALADINI, Fabiana; FIORILLO, Maria Teresa; +1 Authors

Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation

Abstract

Abstract HLA-E is a nonclassical HLA-class I molecule whose best known role is to protect from the natural killer cells. More recently, an additional function more similar to that of classical HLA-class I molecules, i.e., antigen presentation to T cells, is emerging. However, much remains to be explored about the intracellular trafficking of the HLA-E molecules. With the use of 3 different cellular contexts, 2 monocytic cell lines, U937 and THP1, and peripheral blood monocytes, we show here a remarkable increase of HLA-E during monocyte-macrophage differentiation. This goes independently from the classical HLA-class I, the main source of HLA-E-specific peptides, which is found strongly up-regulated upon differentiation of peripheral blood monocytes but not at all in the case of U937 and THP1 cell lines. Although in all cases, there was a moderate increase of HLA-E expressed in the cell surface, lysis by natural killer cells is comparably restored by an anti-NKG2A antibody in untreated as well as in PMA-differentiated U937 cells. Instead, the great majority of the HLA-E is retained in the vesicles of the autophagy-lysosome network, where they colocalize with the microtubule-associated protein light chain 3, as well as with the lysosomal-associated membrane protein 1. We conclude that differently from the classical HLA-class I molecules, the primary destination of the newly synthesized HLA-E molecules in macrophages is, rather than the cell membrane, the intracellular autophagy-lysosomal vesicles where they are stored and where they can encounter the exogenous antigens.

Keywords

Cytotoxicity, Immunologic, Macrophages, Cell Membrane, Histocompatibility Antigens Class I, Intracellular Space, Cell Differentiation, Monocytes, Up-Regulation, Immunomodulation, Killer Cells, Natural, Protein Transport, NK cells; human leukocyte antigen-E; monocytic, Cell Line, Tumor, Phagosomes, Metalloproteases, Humans, Lysosomes, HLA-E Antigens, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%