Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental and Cli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental and Clinical Transplantation
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Expression of Programmed Cell Death 1 and Helios Genes Correlates With rs872071A>G and rs12203592C>T Single-Nucleotide Polymorphisms of InterferonRegulatory Factor 4 in Patients with T-Cell-Mediated Rejection of Renal Allograft

Authors: Azam, Alamdari; Farzaneh Sadat, Minoo; Sara, Assadiasl; Mahboobeh, Freidoon; Fatemeh, Pour-Reza-Gholi; Narjes, Soleimanifar; Bahareh, Mohebbi; +3 Authors

Expression of Programmed Cell Death 1 and Helios Genes Correlates With rs872071A>G and rs12203592C>T Single-Nucleotide Polymorphisms of InterferonRegulatory Factor 4 in Patients with T-Cell-Mediated Rejection of Renal Allograft

Abstract

Acute T-cell-mediated rejection of the renal allograft is a serious posttransplant challenge that requires administration of high-dose immunosuppressive drugs with considerable side effects; therefore, specific targeting of T-cell responses may improve both prevention and treatment of T-cell-mediated rejection. A potential candidate for this purpose is interferon regulatory factor 4 because of its implication in differentiation and function of T cells. Our aim was to evaluate the frequency of the rs872071A>G and rs12203592C>T single-nucleotide polymorphisms of the interferon regulatory factor 4 gene and association of these 2 polymorphisms with the gene expression of programmed cell death 1 and Helios in patients with T-cell-mediated rejection versus stable recipients.Sixty recipients with T-cell- mediated rejection and 60 age-matched and sex-matched stable recipients were recruited. Two single-nucleotide polymorphisms of interferon regulatory factor 4 gene, as well as the expression of programmed cell death 1 and Helios genes in peripheral blood mononuclear cells, were investigated with real-time polymerase chain reaction.Programmed cell death 1 gene expression was reduced in patients with T-cell-mediated rejection versus stable recipients (P = .03). The frequency of rs872071A>G and rs12203592C>T single-nucleotide polymorphisms showed no significant difference between groups. Presence of the rs12203592C>T single-nucleotide polymorphism was directly correlated with the expression of programmed cell death 1 gene (P = .049), and rs872071A>G positivity was directly correlated with Helios gene expression (P = .008), which suggests an inhibitory role for interferon regulatory factor 4 on programmed cell death 1 and Helios molecules.Programmed cell death 1 gene expression was lower in patients with T-cell-mediated rejection versus stable recipients. Low-expressing singlenucleotide polymorphisms of interferon regulatory factor 4 could enhance the downstream gene expression of programmed cell death 1 and Helios immunoregulatory molecules. Therefore, specific inhibition of interferon regulatory factor 4 may promote tolerance induction in the allograft.

Related Organizations
Keywords

Graft Rejection, Treatment Outcome, T-Lymphocytes, Interferon Regulatory Factors, Leukocytes, Mononuclear, Humans, Apoptosis, Allografts, Kidney Transplantation, Polymorphism, Single Nucleotide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold