Characterization of functional disordered regions within chromatin-associated proteins
Characterization of functional disordered regions within chromatin-associated proteins
Intrinsically disordered regions (IDRs) are abundant and play important roles in the function of chromatin-associated proteins (CAPs). These regions are often found at the N- and C-termini of CAPs and between structured domains, where they can act as more than just linkers, directly contributing to function. IDRs have been shown to contribute to substrate binding, act as auto-regulatory regions, and drive liquid-liquid droplet formation. Their disordered nature provides increased functional diversity and allows them to be easily regulated through post-translational modification. However, these regions can be especially challenging to characterize on a structural level. Here, we review the prevalence of IDRs in CAPs, highlighting several studies that address their importance in CAP function and show progress in structural characterization of these regions. A focus is placed on the unique opportunity to apply nuclear magnetic resonance (NMR) spectroscopy alongside cryo-electron microscopy to characterize IDRs in CAPs.
- University of Colorado Anschutz Medical Campus United States
biophysics, protein folding, Science, Q, biochemistry, structural biology, Review
biophysics, protein folding, Science, Q, biochemistry, structural biology, Review
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
