Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genetic Epidemiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetic Epidemiology
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DZNE Pub
Article . 2010
Data sources: DZNE Pub
versions View all 3 versions

A Bayesian approach to genetic association studies with family‐based designs

Authors: Scott T. Weiss; Christoph Lange; Christoph Lange; Christoph Lange; Melissa G. Naylor;

A Bayesian approach to genetic association studies with family‐based designs

Abstract

AbstractFor genome‐wide association studies with family‐based designs, we propose a Bayesian approach. We show that standard transmission disequilibrium test and family‐based association test statistics can naturally be implemented in a Bayesian framework, allowing flexible specification of the likelihood and prior odds. We construct a Bayes factor conditional on the offspring phenotype and parental genotype data and then use the data we conditioned on to inform the prior odds for each marker. In the construction of the prior odds, the evidence for association for each single marker is obtained at the population‐level by estimating its genetic effect size by fitting the conditional mean model. Since such genetic effect size estimates are statistically independent of the effect size estimation within the families, the actual data set can inform the construction of the prior odds without any statistical penalty. In contrast to Bayesian approaches that have recently been proposed for genome‐wide association studies, our approach does not require assumptions about the genetic effect size; this makes the proposed method entirely data‐driven. The power of the approach was assessed through simulation. We then applied the approach to a genome‐wide association scan to search for associations between single nucleotide polymorphisms and body mass index in the Childhood Asthma Management Program data. Genet. Epidemiol. 34:569–574, 2010. © 2010 Wiley‐Liss, Inc.

Keywords

genetics [Asthma], Models, Statistical, Genotype, Models, Genetic, Bayes Theorem, methods [Genome-Wide Association Study], Polymorphism, Single Nucleotide, Asthma, Linkage Disequilibrium, Body Mass Index, Phenotype, Humans, Child, Genome-Wide Association Study, ddc: ddc:610

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
bronze