Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao APOPTOSISarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
APOPTOSIS
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
APOPTOSIS
Article . 2012
versions View all 2 versions

The natural diterpene ent-16β-17α-dihydroxykaurane down-regulates Bcl-2 by disruption of the Ap-2α/Rb transcription activating complex and induces E2F1 up-regulation in MCF-7 cells

Authors: Alvaro, Morales; Annamil, Alvarez; Francisco, Arvelo; Alírica I, Suárez; Reinaldo S, Compagnone; Iván, Galindo-Castro;

The natural diterpene ent-16β-17α-dihydroxykaurane down-regulates Bcl-2 by disruption of the Ap-2α/Rb transcription activating complex and induces E2F1 up-regulation in MCF-7 cells

Abstract

ent-Kauranes are diterpene-type compounds commonly found in most plant species, especially from the Euphorbiaceae family. These compounds have been studied due to their anti-inflammatory and anti-tumor properties. Regulation of apoptosis, or programmed cell death, is commonly bypassed by tumoral cells, giving rise to uncontrolled proliferating cells, which eventually become carcinogenic. In a previous work, we showed that both mRNA and protein expression levels of the antiapoptotic gene Bcl-2 are reduced in MCF-7 cancer cells by the effect of the natural diterpene ent-16β-17α-dihydroxykaurane (DHK). This effect was not directly associated with the inactivation of NF-κB, as has been shown with other diterpenes compounds. Herein, we report that DHK is dissociating the Ap2α-Rb activating complex, affecting its binding ability for the Bcl-2 gene promoter. These events down-regulate Bcl-2 and is temporally accompanied by the induction of E2F1 and its target pro-apoptotic gene Puma. Disruption of the Rb-Ap2α activation complex was corroborated by chromatin immunoprecipitation and protein immunolocalization, which also revealed that Ap2α sorts out from the nucleus and relocalizes in the cell periphery. Taken together, our study confirms the regulation of Bcl-2 gene transcription by the Ap2α-Rb complex and describes a singular protein relocalization for Ap2α induced by DHK, implicating a new potential therapeutic target to differentially onset apoptosis in tumor cells.

Related Organizations
Keywords

Transcriptional Activation, Down-Regulation, Retinoblastoma Protein, Up-Regulation, Gene Expression Regulation, Neoplastic, Protein Transport, Proto-Oncogene Proteins c-bcl-2, Transcription Factor AP-2, Cell Line, Tumor, Neoplasms, Humans, Diterpenes, Kaurane, Promoter Regions, Genetic, E2F1 Transcription Factor, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%