Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Receptor-Interacting Protein 2 Gene Silencing Attenuates Allergic Airway Inflammation

Authors: Goh, Fera Y.; Cook, Katrina L. T. P.; Upton, Nadine; Tao, Lin; Lah, Lin Chin; Leung, Bernard P.; Wong, W. S. Fred;

Receptor-Interacting Protein 2 Gene Silencing Attenuates Allergic Airway Inflammation

Abstract

Abstract Persistent activation of NF-κB has been associated with the development of asthma. Receptor-interacting protein 2 (Rip2) is a transcriptional product of NF-κB activation. It is an adaptor protein with serine/threonine kinase activity and has been shown to positively regulate NF-κB activity. We investigated potential protective effects of Rip2 gene silencing using small interfering RNA (siRNA) in an OVA-induced mouse asthma model. Rip2 protein level was found to be upregulated in allergic airway inflammation. A potent and selective Rip2 siRNA given intratracheally knocked down Rip2 expression in OVA-challenged lungs and reduced OVA-induced increases in total and eosinophil counts, and IL-4, IL-5, IL-13, IL-1β, IL-33, and eotaxin levels in bronchoalveolar lavage fluid. Rip2 silencing blocked OVA-induced inflammatory cell infiltration and mucus hypersecretion as observed in lung sections, and mRNA expression of ICAM-1, VCAM-1, E-selectin, RANTES, IL-17, IL-33, thymic stromal lymphopoietin, inducible NO synthase, and MUC5ac in lung tissues. In addition, elevation of serum OVA-specific IgE level in mouse asthma model was markedly suppressed by Rip2 siRNA, together with reduced IL-4, IL-5, and IL-13 production in lymph node cultures. Furthermore, Rip2 siRNA-treated mice produced significantly less airway hyperresponsiveness induced by methacholine. Mechanistically, Rip2 siRNA was found to enhance cytosolic level of IκBα and block p65 nuclear translocation and DNA-binding activity in lung tissues from OVA-challenged mice. Taken together, our findings clearly show that knockdown of Rip2 by gene silencing ameliorates experimental allergic airway inflammation, probably via interruption of NF-κB activity, confirming Rip2 a novel therapeutic target for the treatment of allergic asthma.

Keywords

NF-KAPPA-B, Immunoblotting, 610, ACTIVATION, Mice, Receptor-Interacting Protein Serine-Threonine Kinase 2, Hypersensitivity, Respiratory Hypersensitivity, Animals, Gene Silencing, RNA, Small Interfering, Mice, Inbred BALB C, NITRIC-OXIDE, SMOOTH-MUSCLE, NF-kappa B, EPITHELIAL-CELLS, Pneumonia, TNF-ALPHA, Asthma, Disease Models, Animal, Receptor-Interacting Protein Serine-Threonine Kinases, THYMIC STROMAL LYMPHOPOIETIN, MAST-CELLS, ASTHMA, IMMUNE-SYSTEM, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
bronze