Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

In Vivo Processing of CXCL5 (LIX) by Matrix Metalloproteinase (MMP)-2 and MMP-9 Promotes Early Neutrophil Recruitment in IL-1β–Induced Peritonitis

Authors: Song, J.; Wu, C.; Zhang, X.; Sorokin, L. M.;

In Vivo Processing of CXCL5 (LIX) by Matrix Metalloproteinase (MMP)-2 and MMP-9 Promotes Early Neutrophil Recruitment in IL-1β–Induced Peritonitis

Abstract

Abstract Matrix metalloproteinases (MMPs) have been implicated in the cleavage of several proinflammatory chemokines, thereby modulating their function and having an impact on the inflammatory process. However, in vivo evidence of such a role remains limited. In this study, we use IL-1β–induced peritonitis as a model for an acute immune response, which is initiated by neutrophil influx followed by macrophage infiltration within a few hours of IL-1β injection into the peritoneal cavity. Using single and double knockout mice for MMP-2 and MMP-9, we show that MMP-2 and MMP-9 act synergistically mainly at the initial step of neutrophil recruitment into the peritoneal cavity. The use of bone marrow chimeric mice revealed the cellular sources of MMP-2 and MMP-9 to be distinct, with resident cells being the source of the former and infiltrating leukocytes the source of the latter. We show that the omentum is the main site of neutrophil entry into the peritoneal cavity, where MMP-2 and MMP-9 act synergistically to potentiate the action of CXCL5 (ENA-78/ LIX), thereby, promoting neutrophil migration into the peritoneal cavity. To our knowledge, this is the first in vivo demonstration of MMP-2 and MMP-9 processing of a chemokine that has been directly correlated with an enhanced chemoattracting function.

Related Organizations
Keywords

Mice, Knockout, Chemokine CXCL5, Neutrophils, Interleukin-1beta, Peritonitis, Mice, Inbred C57BL, Disease Models, Animal, Mice, Matrix Metalloproteinase 9, Neutrophil Infiltration, Acute Disease, Animals, Matrix Metalloproteinase 2, Peritoneum, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
bronze